
Application of SVMs for Colour Classification
and Collision Detection with AIBO Robots

Michael J. Quinlan, Stephan K. Chalup and Richard H. Middleton∗
School of Electrical Engineering & Computer Science

The University of Newcastle, Callaghan 2308, Australia
{mquinlan,chalup,rick }@eecs.newcastle.edu.au

Abstract

This article addresses the issues of colour classification and collision de-
tection as they occur in the legged league robot soccer environment of
RoboCup. We show how the method of one-class classification with sup-
port vector machines (SVMs) can be applied to solve these tasks satisfac-
torily using the limited hardware capacity of the prescribed Sony AIBO
quadruped robots. The experimental evaluation shows an improvement
over our previous methods of ellipse fitting for colour classification and
the statistical approach used for collision detection.

1 Introduction

Autonomous agents offer a wide range of possibilities to apply and test machine learning
algorithms, for example in vision, locomotion, and localisation. However, training-time
requirements of sophisticated machine learning algorithms can overstrain the hardware of
real world robots. Consequently, in most cases, ad hoc methods, hard coding of expert
knowledge, and hand-tuning of parameters, or similar approaches were preferred over the
use of learning algorithms on the robot. Application of the latter was often restricted to
simulations which sometimes could support training or tuning of the real world robot pa-
rameters. However, often the gap between simulation and the real world was too wide
so that a transfer of training results from the simulated to the real robot turned out to be
useless.

A few years ago it may have been regarded as infeasible to consider the use of support
vector machines [1, 2, 3] on real world robots with restricted processing capabilities. Dur-
ing the first years after their invention support vector machines had the reputation to be
more a theoretical concept than a method which could be efficiently applied in real world
situations. One of the main reasons for this was complexity of the quadratic programming
part. In recent years it has become possible to speed up optimisations for SVMs in various
ways [4]. SVMs have since been successfully applied on many tasks but primarily in the
areas of data mining and pattern classification.

With the present study we explore the feasibility and usefulness of one-class SVM clas-
sification [5] for tasks faced by AIBO robots within the legged league environment of
RoboCup [6]. We focus on two particularly critical issues: detection of objects based on

∗http://www.robots.newcastle.edu.au



correct colour classification and detection of robot-to-robot collisions. Both issues seemed
not to be sufficiently solved and implemented by the teams of RoboCup2002 and caused
significant deterioration in the quality of play even in the world-best teams of that league.

The article has five more sections addressing the environment and tasks, the methods, fol-
lowed by the experiments and applications for colour classification and collision detection,
respectively. The article concludes with a summary.

2 Environment and tasks

The restricted real world environment and the uniformly prescribed hardware of the legged
league [6] of RoboCup provide a good compromise for testing machine learning algorithms
on autonomous agents with a view towards possible applications in more general real world
environments.

A soccer team in the legged league consists of four robots, including one goal keeper. Each
team is identified by robots wearing either a red or blue coloured ‘uniform’. The soccer
matches take place on a green enclosed carpeted field with white boundaries. Two goals,
a blue and a yellow, are positioned on opposite ends of the field. To aid localisation six
beacons are placed regularly around the field, each uniquely identifiable by a specific colour
pattern. The ball used is orange plastic and of a suitable size to be easily moved around
by the robots. The games consist of two ten minute halves under strict rules imposed by
independent referees.

The legged league of RoboCup 2003 prescribed the use of Sony AIBO entertainment
robots, models ERS-210 or the newer ERS-210A. Both have an internal 64-bit RISC
processor with clock speeds of 192MHz and 384MHz, respectively. The robots are pro-
grammed in a C++ software environment using the Sony’s OPEN-R software development
kit [7]. They have 16MB of memory accessible by user programs. The dimensions of the
robot (width× height× length) are 154 mm× 266 mm× 274 mm (not including the
tail and ears) and the mass is approximately 1.4 kg. The AIBO has 20 degrees of freedom
(DOF): neck 3DOF (pan, tilt, and roll), ear 1DOF x 2, chin 1DOF, legs 3DOF (abductor,
rotator, knee) x 4 and tail 2DOF (up-down, left-right).

Among other sensors the AIBO has a 1/6 inch colour CMOS camera capable of 25 frames
per seconds. The images are gathered at a resolution of 352(H)× 288(V) but middleware
restricts the available resolution to a maximum of 176(H)× 144(V). The lens has an aper-
ture of 2.0 and a focal length of 2.18 mm. Additionally, the camera has a field of vision
of 23.9◦ up and down and28.8◦ left and right. To help achieve results in different lighting
conditions the camera allows the modification of parameters:White balance, Shutter Speed
andGain.

2.1 Colour classification task

The vision system for most teams consists of four main tasks,Colour Classification, Run
Length Encoding, Blob FormationandObject Recognition(Figure 1).

The classification process takes the image from the camera in a YUV bitmap format [8].
Each pixel in the image is assigned a colour label (i.e. ball orange, beacon pink etc.)
based on its YUV values. A lookup table (LUT) is used to determine which YUV values
correspond to which colour labels. The critical point is the initial generation of the LUT.
Since the robot is extremely reliant on colour for object detection a new LUT has to be
generated with any change in lighting conditions. Currently this is a manual task which
requires a human to take hundreds of images and assign a colour label on a pixel-by-pixel
basis. Using this method each LUT can take hours to create, yet it will still contain holes
and classification errors.



CMOS Camera
Colour Lookup Table
3x6bit YUV Pixels

176x144 Pixels
(3x8bit YUV)

Run Length Encoding
& Blob Formation

176x144 Pixels
(Enum)

Image

Object Recognition
List of Blobs

List of Objects

Figure 1: Vision System of the NUbots Legged League Team [9]

2.2 Collision detection task

The goal is to detect collisions using the limited sensors provided by the AIBO robot. The
camera and infrared distance sensor on the AIBO don’t provide enough support in avoiding
obstacles unless the speed of the robot is dramatically decreased. For these reasons we have
chosen to use information obtained from the joint sensors (i.e. the angle of the joint) as the
input to our collision detection system [10].

3 One-class SVM classification method

An approach to one-class SVM classification was proposed by Schölkopf et al. [5]. Their
strategy is to map data into the feature space corresponding to the kernel function and to
separate them from the origin with maximum margin. This implies the construction of a
hyperplane such thatw ·Φ(xi)− p ≥ 0. The result is a functionf that returns the value +1
in the region containing most of the data points and -1 elsewhere. Assuming the use of an
RBF kernel andi, j ∈ 1, ..., `, we are presented with the dual problem:

min
α

1
2

∑

ij

αiαjk(xi, xj) subject to0 ≤ αi ≤ 1
ν`

,
∑

i

αi = 1 (1)

p can be found by the fact that for any suchαi, a corresponding patternxi satisfies:

p =
∑

j

αjk(xj , xi)

The resulting decision functionf (the support of the distribution) is:

f(x) = sign(
∑

i

αik(xi, x)− p)

An implementation of this approach is available in the LIBSVM library [11]. It solves a
scaled version of (1):

min
α

1
2

∑

ij

αiαjk(xi, xj) subject to0 ≤ αi ≤ 1 ,
∑

i

αi = ν`

For our applications we use a RBF kernel with parameterγ in the form k(x, y) =
e−γ‖x−y‖2 . The parameterν approximates the fraction of outliers and support vectors [5].

3.1 Method for colour classification

The classification functions we seek take data that has been manually clustered to produce
setsXk =

{
xk

i ∈ R3; i = 1, ..., Nk

}
of colour space data for each object colourk. Each



Xk corresponds to sets of colour values in the YUV space corresponding to one of the
known colour labels.

An individual one-class SVM is created for each colour, withXk being used as the training
data (each element in the set is scaled between -1 and 1). By training with an extremely
low ν and a largeγ the boundary formed by the decision function approximates the region
that contains the majority (1-ν) of the points inXk. In addition the SVM has the advantage
of simultaneously removing the outliers that occur during manual classification.

The new colour set is constructed by attempting to classify every point in the YUV space
(643 elements). All points that return a value of +1 are inside the region and therefore
deemed to be of colourk.

One-class SVM was chosen because it allows us to optimally treat each individual colour.
To avoid misclassification each point in YUV space that does not strongly correspond to
one of the known colours must remain classified as unknown. In addition the colours were
originally selected because they are located in different areas of the YUV space. Because
of this we can choose to treat each colour without regard to the location and shape of the
other colours. For these reasons we are not interested in using a multi-class technique to
form a hyperplane that provides an optimal separation between the colours.

3.2 Method for collision detection

For collision detection the one-class SVM is employed as a novelty detection mechanism.
In our implementation each training point is a vector containing thirteen elements. These
include five walk parameters,stepFrequency, backStrideLength, turn, strafeand timePa-
rameteralong with a sensor reading from the abductor and rotator joints on each of the
four legs. Upon training the SVMs decision function will return +1 for all values that relate
to a “normal” step, and -1 for all steps that contain a fault.

Speed is of the greatest importance in the Robocup domain. For this reason a collision
detection system must attempt to minimise the generation of false-positives (detecting a
collision that we deemed not to have happened) while still finding a high percentage of
actual collisions. Low false-positives are achieved by keeping the kernel parameterγ high
but this has the side effect of lowering the generalisation to the data set, which results in
the need for an increased number of training points. In a real world robotic system the
need for more training points greatly increases the training time and in-turn the wear on the
machinery.

4 Experiments and application to colour classification

The SVM can be used in two situations during the colour classification procedure. Firstly
during the construction of a new LUT where it can be applied to increase the speed of
classification.

By loweringγ while the number of training points is low, a rough estimation of the final
shape can be obtained. By continuing the manual classification and increasingγ a closer
approximation to the area containing the training data is obtained. In this manner a contin-
ually improving LUT can be constructed until it is deemed adequate.

An extreme example of this application is during the set-up phase at a competition. In the
past when we arrived at a new venueall system testing was delayed until the generation
of a LUT. Of critical importance is testing the locomotion engine on the new carpet and in
particular ball chasing. The task of ball chasing relies on the classification of ball orange.
Thus a method of quickly but roughly classifying orange is valuable. By manually classi-
fying a few images of the ball and then training the SVM withγ < 0, a sphere containing



all possible values for the ball is generated.

The second situation in which we use the one-class SVM is on a completed LUT. Either all
colours in the table can be trained (i.e. updating of an old table) or an individual colour is
trained due to an initial classification error. This procedure can be performed either on the
robot or a remote computer.

Empirical tests have indicated thatν = 0.025 andγ = 250 provide excellent results on a
previously constructed LUT. The initial table contained 3329 entries while after training
the table contained 6989 entries. The most evident change can be seen in the classification
of colour white, see Figure 2.

The LUTs were compared over 60 images, which equates to 1,520,640 individual pixel
comparisons. The initial table generated 144,098 classification errors. The new LUT pro-
duced 117,652 errors, this equates to an 18% reduction in errors.

Figure 2: Image Comparison: The left image is classified with the original LUT and the
image on the right is the using the updated LUT. Black pixels indicate an unknown colour.

4.1 Comparison with ellipsoid fitting

The previous method involved converting the existing LUT values from YUV to the HSI
colour space [8] and fitting an ellipsoid,E, which can be represented by the quadratic form:

E (x0, Q) =
{

x ∈ R3 : (x− x0)
T

Q−1 (x− x0) ≤ 1
}

(2)

wherex0 is the centre of the ellipsoid, and the size, orientation and shape of the ellipsoid
are contained in the positive definite symmetric matrixQ = QT > 0 ∈ R3×3.

Note that this definition of the shape can be alternatively represented by the linear matrix
inequality (LMI):

xi ∈ E =
[

Q (xi − x0)
(xi − x0)

T 1

]
≥ 0 (3)

The LMI (3) is linear in the unknownsQ andx0 and this therefore leads to the convex
optimisation:

(Q, x0) = argmin
Q = QT > 0, x0 :

(3) is true fori = 1..Nk

{tr(Q)}

Note that minimising the trace of Q (tr(Q)) is the same as minimising the sum of the
diagonal elements of Q which is the same as minimising the sum of the squares of the



lengths of the principal axes of the ellipsoid. The ellipsoidal shape defined in (2) has the
disadvantage of restricting the shape of possible regions in the colour space. However, it
does have the advantage of having a simple representation and a convex shape.

Before the ellipsoid can be fitted, potential outliers and duplicate points were identified and
removed. The removal of outliers is important in avoiding too large a region. Duplicate
points were removed, since these increase computations without adding any information.

For the comparison we use the initial LUT from the above example. Figure 3 shows the
effects of each method on the colour white. To make the comparison with ellipsoids, the
initial LUT and the generated LUT from the SVM procedure are shown in the HSI colour
space.

Figure 3: Colour classification in HSI colour space: A) Points manually classified at
white. B) Ellipsoid fitted to these white points. C) Result of the one-class SVM technique,
ν=0.025 andγ=10. D) Result of the one-class SVM technique,ν=0.025 andγ=250.

It is evident that the manual classification of white is rather incomplete and contains many
holes that should be classified as white. The negative results of these holes can be seen as
noise in the left image of Figure 2.

Using the ellipsoid fitting method these holes are filled but with the potential drawback
of over classification. From image B in Figure 3 it is evident that the top section and the
bottom left of the ellipsoid contain no white entries and therefore it is highly questionable
that this area should be classified as white.

Images C and D in the figure show the results of our one-class SVM method. It is clear
from image D that the area now classified as white is a region that tightly fits the original
training set.

5 Experiments and application to collision detection

The collision detection system is designed with the aim that the entire system can be run on
the robot. This means adhering to the memory and processing capabilities of the device. On
the AIBO we have a maximum of 8MB memory available for collision detection, a total of



20,000 training points. This is the equivalent of 1000 steps which equates to approximately
10 minutes of training time. The training set is generated by having the robot behave
normally on the field but with the stipulation that all collisions are avoided.

The trained classifier analyses the on-line stream of joint data measurements in samples
of ten consecutive data points. If more than 2 points in one sample are classified as -1 a
collision is declared to be detected.

Initial parameters ofν = 0.05 andγ = 5 were chosen, this was based on the assumption
that a collision point would lie considerably outside the training set. The results from these
parameters were less then satisfying, only the largest of collisions (i.e. physically holding
multiple legs) were detected. The solution to this problem could involve increasingν due
to the possibility that the initial training set contained many outliers and/or increasingγ to
improve the tightness of the classification.

By a series of tests, all of which tended to lead to either an over classification or an under
classification, parameters ofν = 0.05 andγ = 100 were settled on. In our system these
parameters appear to give the best balance between minimising false-positives and max-
imising correct detection of collisions.

5.1 Comparison with the previous statistical method

The previous method, described in [10], for collision detection involves observing a joint
position substantially differing from its expected value. In our case an empirical study
found two standard deviations to be a practical measure, see Figure 4. Initially we would
have considered a collision to have occurred if a single error is found, but further investi-
gation has shown that finding multiple errors (in most cases three) in quick succession is
necessary to warrant a warning that can be acted upon by the robot’s behaviour system.

Figure 4: Rear Rotators for a forwards walking boundary collision on both front legs, front
right leg hitting first. The bold line shows the path of a collided motion. The dotted line
represents the mean “normal” path of the joint (that is, during unobstructed motion), with
the error bars indicating two standard deviations above and below.

One drawback of this method is that it relied on domain knowledge to arrive at two standard
deviations. In addition it required considerable storage space to hold the table of means and
standard deviations for each parameter combination.

The previous statistical method had the advantage of extremely low computational expense,
in fact it was a table look up. The trade-off is increased space, this method required the
allocation of approximately 6MB of memory during both the training and detection stages.
Conversely the SVM approach requires only about 1MB of memory during the detection
phase, but this comes at the side effect of increased computation. Since the SVM approach
was capable of running without reducing the frame rate, the extra memory could now be
used for other applications.



With respect to accuracy the SVM approach slightly outperformed the original statistical
method for particular types of steps, these include the common steps associated with chas-
ing the ball. Other step types, such as an aggressive turn did not show the same improve-
ment. This is due to the movement of the joints in some motions being more inconsistent,
thus making accurate classification harder.

A possible solution may involve using multiple SVMs associated with different combi-
nations of walk parameters, allowing the tuning of parameters on a specific basis. This
solution would have the downside of requiring more memory.

6 Summary

The method of one-class classification with SVMs was successfully applied to the tasks
of colour classification and collision detection using the restricted memory and processing
power of the AIBO hardware. It was possible to run the SVM algorithm implemented
in the C++ libraries of LIBSVM off and on the robot. In a comparison with previously
used methods the SVM based methods generated better results, and in the case of colour
classification the SVM approach was more efficient and convenient.

Acknowledgments

We would like to thank William McMahan and Jared Bunting for their work on the previ-
ous vision classification method and Craig Murch for his extensive contributions to both
the vision and locomotion systems. Michael J. Quinlan was supported by a University of
Newcastle Postgraduate Research Scholarship.

References

[1] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classi-
fiers. In D. Haussler, editor,Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152, Pittsburgh, PA, July 1992. ACM Press.

[2] C. Cortes and V. Vapnik. Support vector networks.Machine Learning, 20:273 – 297, 1995.

[3] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[4] Bernhard Scḧolkopf and Alexander J. Smola.Learning with Kernels, Support Vector Machines,
Regularization, Optimization and Beyond. The MIT Press, 2002.

[5] B. Scḧolkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution.Neural Computation, 13:1443–1471, 2001.

[6] RoboCup Legged League web site. http://www.openr.org/robocup/index.html.

[7] OPEN-R SDK. http://openr.aibo.com.

[8] Linda G. Shapiro and George C. Stockman.Computer Vision. Prentice Hall, 2001.

[9] J. Bunting, S. Chalup, M. Freeston, W. McMahan, R. Middleton, C. Murch, M. Quinlan,
C. Seysener, and G. Shanks. Return of the NUbots! The 2003 NUbots Team Report, 2003.
http://robots.newcastle.edu.au/publications/NUbotFinalReport2003.pdf.

[10] Michael J. Quinlan, Craig L. Murch, Richard H. Middleton, and Stephan K. Chalup. Traction
monitoring for collision detection with legged robots. InRoboCup 2003 Symposium, 2003.

[11] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/˜ cjlin/libsvm.


